

K25P 1900

Reg. No. :

Name :

II Semester M.Sc. Degree (C.B.C.S.S. – OBE-Reg./Supple./Imp.) Examination, April 2025 (2023 and 2024 Admissions) MATHEMATICS MSMAT02C08 : Advanced Real Analysis

PART – A

Time : 3 Hours

Max. Marks: 80

Answer any 5 questions from this Part. Each question carries 4 marks.

- 1. Define a complete metric space. Give an example.
- 2. State Stone's generalization of the Weierstrass theorem.
- 3. Define a trigonometric polynomial and prove that every trigonometric polynomial is periodic.
- 4. For the gamma function prove that $\log \Gamma$ is convex on $(0,\infty)$.
- 5. State inverse function theorem.
- 6. Suppose E is an open set in \mathbb{R}^n , f maps E into \mathbb{R}^m and $x \in E$. Define the derivative of f at x. (5×4=20)

PART - B

Answer **any 3** questions from this Part. **Each** question carries **7** marks.

- 7. Suppose $\lim_{n \to \infty} f_n(x) = f(x)$, $x \in E$ and put $M_n = \sup |f_n(x) f(x)|$. Prove that $f_n \to f$ uniformly on E if and only if $M_n \to 0$ as $n \to \infty$.
- 8. Prove : A sequence $\{f_n\}$ converges to f with respect to the metric of $\mathscr{C}(X)$ if and only if $f_n \to f$ uniformly on X.
- 9. Let $f_n(x) = \sin nx$ where $0 \le x \le 2\pi$, n = 1, 2, 3,... Prove that there does not exists a subsequence $\{f_n\}$ of $\{f_n\}$ which converges pointwise on $[0, 2\pi]$.

K25P 1900

- 10. Let $\{\phi_n\}$ be orthonormal on [a, b]. Let $s_n(x) = \sum_{m=1}^n C_m \phi_m(x)$ be the nth partial sum of the Fourier series of f and suppose $f_n(x) = \sum_{m=1}^n \gamma_m \phi_m(x)$. Then prove that $\int_a^b |f s_n|^2 dx \le \int_a^b |f t_n|^2 dx$ and equality holds if and only if $\gamma_m = C_m$ for m = 1, 2, 3, ..., n.
- 11. Prove : Suppose f maps an open set E ⊂ Rⁿ into R^m and f is differentiable at a point x ∈ E. Then the partial derivatives (D_jf_j) (x) exist and f'(x)e_j = ∑_{i=1}^m(D_jf_j)(x)u_i (1 ≤ j ≤ n) where e₁, e₂, ..., e_n and u₁, u₂, ..., u_m are standard bases for Rⁿ and R^m respectively. (3×7=21)

PART – C

Answer any 3 questions from this Part. Each question carries 13 marks.

- 12. Let X be a metric space and $\mathscr{C}(X)$ be the set of all complex valued continuous bounded functions with domain X. Prove that $\mathscr{C}(X)$ is complete metric space.
- 13. a) Define pointwise bounded sequence of functions.
 - b) Let α be monotonically increasing on [a, b]. Suppose $f_n \in \mathscr{R}(\alpha)$ on [a, b], for n = 1, 2, 3, ... and suppose $f_n \to f$ uniformly on [a, b]. Then prove that $f \in \mathscr{R}(\alpha)$ on [a, b] and $\int_a^b f dx = \lim_{n \to \infty} \int_a^b f_n dx$.
- 14. State and prove Weierstrass theorem.
- 15. Suppose $a_0, a_1, a_2, ..., a_n$ are complex numbers, $n \ge 1$. $a_n \ne 0$, $P(z) = \sum_{k=0}^{n} a_k z^k$. Then prove that P(z) = 0 for some complex number z.
- 16. State and prove implicit function theorem.(3×13=39)